Search results for "Myeloid leukemia cell lines"

showing 2 items of 2 documents

Imiquimod inhibits growth and induces differentiation of myeloid leukemia cell lines

2018

Background: The antitumoral effects of different Toll-like receptor (TLRs) agonists is mediated by activating immune responses to suppress tumors growth, although TLR ligands may also have a direct effect on tumoral cells. Given that TLR signaling induces hematopoietic cell differentiations this may serve as a novel differentiation therapeutic approach for AML. Methods: We investigated the effects of agonists for the ten human TLRs on the proliferation, apoptosis, cell cycle and differentiation of ten different types of myeloid leukemia cell lines (HL-60, U-937, KG-1, KG-1a, K-562, Kasumi-1, EOL-1, NB4, MOLM-13 and HEL). Proliferation was measured using the CellTiter 96 (R) Aqueous One Solu…

0301 basic medicineCancer ResearchMyeloidImiquimodlcsh:RC254-282Flow cytometry03 medical and health sciences0302 clinical medicineToll-like receptorGeneticsmedicineCytotoxic T cellMyeloid leukemia cell lineslcsh:QH573-671Toll-like receptorImiquimodmedicine.diagnostic_testChemistryCell growthlcsh:CytologyMyeloid leukemiaCell cyclelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens030104 developmental biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisCancer researchPrimary Researchmedicine.drugCancer Cell International
researchProduct

Chemical and biological evaluation of cross-linked halloysite-curcumin derivatives

2020

Abstract Well designed and safe nano drug carrier systems are an important tool in biomedical applications. The combination of two or more drugs has been used in medicine both to enhance the therapeutic effect and to decrease the side effects of drugs. Biocompatible halloysite nanotubes, that possess two different surfaces, are a suitable nanomaterial for a simultaneous carrier and release of two drugs that can exert a synergistic effect against cancer cells. In this study, three curcumin derivatives and doxorubicin were loaded by supramolecular and covalent linkage at the lumen and external surface of the halloysite nanotubes. The obtained multifunctional systems were characterized by seve…

Drugmedia_common.quotation_subjectNanoparticle020101 civil engineering02 engineering and technologyengineering.materialHalloysite0201 civil engineeringchemistry.chemical_compoundGeochemistry and PetrologymedicineDoxorubicinCytotoxicitymedia_commonSettore CHIM/02 - Chimica FisicaHalloysite nanotubes Curcumin derivatives Dual drug delivery Antiproliferative activity Breast cancer cell lines and acute myeloid leukemia cell linesChemistryGeologySettore CHIM/06 - Chimica Organica021001 nanoscience & nanotechnology3. Good healthCancer cellBiophysicsengineeringCurcuminSettore BIO/14 - Farmacologia0210 nano-technologyDrug carriermedicine.drug
researchProduct